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Normal ordering for deformed boson operators and 
operator-valued deformed Stirling numbers 
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43 Boulevard du 11 Novembre 1918, F-69622 Villeurbanne Cedex, France 

Received 7 October 1991 

Abstract. The normal ordering formulae for powers of the boson number operator 8 are 
extended to deformed bosons. It is found that for the 'M-type' deformed bosons, which 
satisfy 0 0 ' - q n * o = l ,  the extension involver a set of deformed Stirling numben which 
replace the Stirling numbers occurring in the conventional case. On the other hand, the 
deformed Stirling numbers which have to be introduced in the case ofthe 'P-type' deformed 
bosons, which satisfy o ~ ' - q o ' ~ = q ~ ' ,  are found to depend on the operator 6. This 
distinction between the two types of deformed bosons is in harmony with earlier observa- 
tions made in the context of a study of the extended Campbell-Baker-Hausdorff formula. 

1. Introduction 

The transformation of a second-quantized operator into a normally ordered form, in 
which each term is written with the creation operators preceding the annihilation 
operators, has been found to simplify quantum mechanical calculations in a large and 
vaned range of situations. Techniques for the accomplishment of this ordering have 
been developed and are widely utilized [l ,  21. A particular subclass of problems and 
techniques involves situations in which the operators of interest commute with the 
number operator. More specifically, one is interested in transforming an operator which 
is a function of the number operator into a normally ordered form, or transforming 
an operator each of whose terms has an equal number of creation and annihilation 
operators corresponding to each degree of freedom, into an equivalent operator 
expressed in terms of the number operator only. 

In the present article we consider the corresponding problem for the deformed 
bosons which have been investigated very extensively in the last three years [3,4] in 
connection with the recent interest in the properties and applications of quantum 
groups. 

2. Stirling and deformed Stirling numbers 

The Stirling numbers of the first (s) and second ( S )  kinds were introduced in connection 
with !he expressinn for a descending product of a variable x as a linear combination 
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of integral and positive powers of that variable, and the inverse relation, respectively 

J Kafriel and M Kibler 

[SI 
k 

x ( x - I ) .  . . ( x - k + l ) =  s ( k ,  m)xm (1) 
“ l = l  

... 
xm = 1 S(m, k)x(x- 1 ) .  . . (x-kf I ) .  (2) 

Using these defining relations it is easy to show that the Stirling numbers satisfy the 
recurrence relations 

k = l  

s (k+l ,  m ) = s ( k ,  m-l)-ks(k, m )  (3 )  

S ( m  + 1, k )  = S(m, k - I ) +  kS( m, k )  (4) 

and 

with the initial values s(1, 1) = S(1, 1) = 1 and the ‘boundary conditions’ s(i, j) = 
S(i,  j )  = 0 for i < 1, j < 1 and for i < j. The combinatorial significance of the Stirling 
number has been amply discussed [6]. 

Several generalizations of the Stirling numbers appeared in the mathematical 
literature [7-121. In anticipation of further development we shall refer to them generi- 
cally as deformed Stirling numbers. In this context we wish to distinguish between the 
two widely used forms of ‘deformed numbers’ [XI,,, = ( q x  - l)/(q - 1). the usual choice 
in the mathematical literature on q-analysis [ 131, and [xIp = ( q x  - q-” ) / (q -  q-’) ,  which 
is common to the recent physical literature and to the literature on quantum groups. 
A generalization was recently proposed by Wachs and White [ 121, which can be written 
in the form [xlC=(qx-p1)/(q-p). This form contains [XI,,, and [xIp as special 
cases, corresponding to the choices p = 1 and p = q-’ ,  respectively. We shall write 
[x],,,(~), [ x ] ~ ( ~ )  and [ x ] ~ ( ~ , ~ )  instead of the symbols introduced above whenever the 
choice of the parameters q and/or p will have to be explicated. The identites 

[XIP(9 )  = q-x+l[XlM(9? 

[xlo(P,q) = ( 4 G ) x - ’ [ x l P m )  (5) 

[xlo(p,q) = Px-I[xlMcq,p, 

illustrate the notation and exhibit some of the elementary properties of these deformed 
numbers. 

One of the generalizations of the Stirling numbers [lo] involves a descending 
product of M-type deformed numbers expressed in terms of the powers of the M-type 
deformed number [XI,,, 

[ x ] ~ [ x - ~ ] ~ . .  . [ x - k + l I M  = 2 s 9 ( k ,  m)[xlZ (6)  
m=, 

and the corresponding inverse relation 
m 

[XI; = 2 SJm, k)[xIM[x - I],,, . . . [x - k +  1 I M .  (7) 
k - l  

Using the defining relations it is easy to show that the deformed Stirling numbers 
s,(k, m) and Sq(m, k), which are referred to in the mathematical literature as q-Stirling 
numbers of the first and second kind, respectively, satisfy the recurrence relations 

sq (k  + 1, m )  = q - ‘ ( s 9 (  k, m - 1) - [ ~ I M s ~ ( S  m ) )  (8) 
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and 

S, (m + 1, k )  = qk-’Sq( m, k - I )  + [ k]&( m, k )  (9) 

with ‘boundary conditions’ and initial values identical with those specified above for 
the conventional Stirling numbers. 

A slight modification in the form of the descending product, replacing the factors 
[x-& by [XI, -[iIM, results in the relations [8-101 

and 
m 

[XI;= Z &(m, k)[xlM([xlM - i l lM) .  . . ([xlM -[k- 1 h ) .  

[ ~ I M  - [ ~ I M  = qb[a  - b l M  

(11) 
k = l  

Starting with these defining relations and using the identity [9] 

(12) 

we obtain the recurrence relations 

c g ( k + l z  m ) = F q ( k  m-l)-[k].&(k~ m! (13) 

and 

& ( m + l ,  k)=.!$(m, k-l)+[k],&(m, k) (14) 

where the ‘boundary conditions’ and initial values are, again, as above. Note that 

s9(k m) S,(m, k) = q-k‘k-1’’2S 4 ,  ( m  k). (15) 

The two sets of deformed Stirling numbers of the first and second kinds, as well 
as the conventional Stirling numbers to which they reduce in the limit 9 +  1, satisfy 
the following dual relations 

k(k - l ) /2  f,(k, m)  = 9 

s,(k m)S,(m, k’)= S(k k’) (16) 
m = ,  

and 
m 

X S,(m, k)s,(k m‘)  = 8(m, m ‘ ) .  (17) 

An additional set of deformed Stirling numbers of the second kind was recently 
introduced by Wachs and White [12]. Their definition is motivated by combinatorial 
considerations and has no algebraic origin. Their recurrence relation reads 

k = l  

S,,q (m + 1, k) = p k-’Sp,J m, k - 1 ) + [kI&. (m, k) (18) 

and it reduces to (14) for p = 1. 

3. Some algebraic properties of deformed boson operators 

In the context of recent interest in quantum groups and their realization, three types 
of deformed boson operators have been introduced [3,4,14]. The most straightforward 
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definition starts by postulating a Fock space on which creation (a ) ,  annihilation ( a ' )  
and number (a) operators are defined in analogy with the conventional boson operators. 
The general form postulated is 

al/)=ml/- 1) a ' / / >  = ~ I / + I )  f i l l )=  I l / ) .  (19) 
It follows immediately that a'a = [ f i ]  and ad'= [ n ^ +  11. The two widely used forms of 
the deformed bosons are obtained by choosing either [/I = [/IM = (4'- I)/(q - 1 )  or 
r i i - r i i  - t A l - m - l ~ i ( n - A - l \  A nn_Ol.l~:_-+: ......,- DrP,._..ti ..-- . . - . . ~ m ~ ~ . . ~ ~ . - ~ - - ~ - - . :  
and Jagannathan [14]. We shall adhere to the notation introduced by Wachs and White 
[12] and write this generalization in the form [ / ] = [ l ] , = ( q ' - p ' ) / ( q - p ) ,  which is 
trivially modified relative to that introduced in [14]. As a consequence of a remark 
made in the previous section, this third type of deformed boson contains the first two 
as special cases. 

rhe deformed bosons as defined by (I?! are ne! ass~!cia!ed with any II price 
specification of a (possibly deformed) commutation relation. Choosing a parameter 
Q, which does not have to be related to the two parameters p and q so far introduced, 
the deformed bosons are found to satisfy the deformed commutation relation 

J Katriel and M Kibler 

L . ,  - L.,P - \ y  y ,I ,.j y ,. r. 5*'.*LOLLLLPL1"L1 v-1 L v c c L L ' L y  p"p""rU u y  L I I a L L I u a I I I  

1 

4-P 
[a ,  a'lo = aa'- Qa'a = +(3)  =-(q'(q- Q)+p'((p-p)). (20) 

Since the choice of Q is arbitrary we can opt to be guided by the requirement that the 
form of + ( f i )  be as simple as possible or by some other relevant criterion. The 
conventional choice Q = q, to which we will eventually adhere, results in 

(21) aa' - qa'a = &(<) = I 

aa'-qa'a=+,(fi)=q-' (22) 
and 

aa' -qa'a = +o(ii) = p' (23) 
for the M-type, P-type and G-type bosons, respectively. We do not label the creation 
and annihilation operators by indices such as M, P or G because the nature of these 
operators is always obvious from the context. The choice Q = p  results in + ( f i )  = q' 

the deformed commutation relation becomes aa'-a'a =q'. For the P-type bosons 
( p  = q-')  this choice is the familiar alternative to (22), namely aa'- q-'a'a = q'. In 
a recent study of the extension of the Campbell-Baker-Hausdorl7 formula to deformed 
bosons [16], it was noted that the choice Q = q is the most suitable one for the M-type 
bosons, but that Q = q +  q-' - 1 seems to have some advantages for the P-type bosons. 
From the same point of view: one would choose 0 = q + p  - 1 for the G-type bosons. 

fer 211 ! h ~  three rases, Fer !he M-type besans ( p  = 1) !his choice implies Q = 1, i.e. 

We shall also need the relation 

[ a k ,  atlo. =@(k, n^)a'-' (24) 
which can be viewed as an extension of (20) in the sense that O(1, f i ) = + ( n ^ ) .  One 
easily finds that 

(25) 
1 

4 - P  
@(k f i )  =--- ( q ' ( 4  - Q ) [ k l ~ c o , 4 i + ~ ' ( Q - ~ ) [ k l ~ ~ o , ~ i ) .  

We shall retain the conventional choice Q = q for the three cases specified above. With 
this choice we get 
@ ~ ( k , n * ) = [ k l ~  @ p ( k ,  n ^ ) = [ k ] ~ - '  @o(k fi)=[kIcp'. ( 2 6 )  
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4. Normal ordering of powers of the deformed number operator 

The relevance of the ordinary Stirling numbers to the normal ordering of powers of 
the boson number operator was demonstrated in [ 151. In the present section we consider 
some normal ordering properties of the deformed bosons specified by the parameter 
choice p = 1 and Q = q, which corresponds to the M-type boson operators and to the 
deformed commutation relation (21). Up to a trivial interchange of p and q this is the 
oniy combination of parameters for which the deformed commutator does not depend 
on A. The other types of deformed boson operators are considered in the following 
section where it is found that they differ in a significant respect from the case presently 
considered. 

In order to express an integral power of [ G I ,  in a normally ordered form we can 
either formally write such an expansion and obtain a recurrence relation for the 
coefficients by applying (21) or use the deformed Stirling numbers of the second kind 
directly. We shall present both approaches because of the intrinsic interest of each 
one of them. 

In the direct approach, we start from the expansion 
m 

(27) [A]mM=(atn)"'= 1 c ( m , k ) ( a )  t k  a .  k 

k = 1  

Expressing (a+a)'"+l by means of (27) and using (21), we obtain a recurrence relation 
which is identical with the one satisfied by S,(m, k ) ,  equation (9). Moreover, it is 
obvious from the defining equation (27) that c(1, l ) = S q ( l ,  1)=1.  Thus, c(m, k ) =  
SJm, k). 

A different derivation can be obtained by using the identity 
k--l n [ A  - i ] ,  =(at)*,*. 
i=o  

This identity follows by noting that application of both sides of (28) on any member 
of the complete set {I/); I = 0,1,. . .) of eigenstates of the number operator results in n::; [ I -  i ] , .  Using (7) we obtain 

m k - I  

[A];= C S, (m,k )  I! [A-i].e 
k - I  i=o 

and substituting (28) we get the desired normally ordered expansion 
m 

t k  k [ e l ; =  Z: k ) ( a  ) a . 
k = l  

(29) 

We note in passing that an equivalent expansion could have been obtained starting 
from the identity 

k - l  

(31) 

This identity can be proved either by induction or by considering the effect of both 
sides on the complete set of eigenstates of the number operator. Using (11) and (31), 
we obtain the normally ordered expansion of [A]:? in the form 

k ( k - 1 ) / 2  t k k n ( [ n * I M - [ i l M ) = q  ( a ) a .  
i=o 

which is related to (30) by equation (15). 
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In order to obtain the inverse relation, expressing a normally ordered product as 
a function of the number operator, we note that equations (6) and (28) lead to 

k 

(at )kaX = [ 6 ] M [ 6 - 1 ] M . .  . [ i - k + l ] ,  = s,(k, m)[n*]mM. (33) 
m = l  

5. Operator-valued deformed Stirling numbers 

In the present section, we attempt to derive the normally ordered expansion of a power 
of the number operator for arbitrarily deformed bosons. Allowing p, q and Q to be 
arbitrary, we demand 

m 

[ 6 ] g =  (at ) *&m,  k, ;)ak. 
k = I  

(34) 

Using the general relation (24), we derive the recurrence relation 

& m + l ,  k, 6 ) =  Qk- '&m,  k-1, 6 + l ) + $ m ,  k, 6 )@(k ,  6) .  (35) 
The 'boundary conditions' and initial values, for all values of 6, are the same as those 
following (4). 

The M-type bosons ( p  = I ) ,  with the chojce Q = q which yields @,,,(k, 6) = [ k I M ,  
were studied in section 4. For this case, S(m,  k, 6 )  does not depend on 6. More 
specifically, (35) then reduces to (9). For the G-type bosons, we found in section 3 
that by choosing Q =  q we obtain @,(k, 6 ) = [ k I G p ' ;  consequently, we have 

~ G ( m + l , k , 6 ) = q k ~ ' ~ G ( m , k - l , 6 + l ~ + ~ G ( m , k , ~ ~ [ k l G p ~ .  (36) 
Note that in the general case &(m, k, 6 )  depends on the operator 6. The special cases 
p = 1 and p = q-' are contained in (36). The dependence of SG(m, k, 6 )  on 6 for all 
cases except p = 1 can be taken to imply that we have actually failed to obtain a 
normally ordered expansion for [ 6 ] :  in terms of a finite sum in ( a  ) a with k =  
1,2 ,..., m. 

The structure of the recurrence-relation (36) indicates that the dependence on 6 
of the deformed Stirling numbers S,(m, k, 6 )  can be expressed in terms of the factor 
P'm-k 'h  . Defining the (&independent) reduced Stirling numbers of the second kind 
E(m,  k )  through 

T k  k 

gG(,,,, k, 6) = q k ( k - l ) / 2  P I m - k M =  - ( m ,  k )  (37) 

(38) 

we obtain the recurrence relation 

5( m + 1, k )  = p " - " " Z (  m, k -  I ) +  [ k ] , Z (  m, k )  

with the initial condition 5 ( 1 , 1 )  = 1. 

by means of a polynomial in [a],, we need the 'G-arithmetic' identity 

t k  k To obtain the 'inverse relation' to (34). expressing a normally ordered term ( a  ) a 

[ a  - blG = q-'([aIG - P " - ~ [ ~ I G )  (39) 

which follows from the two identities 

[ a  + b I c  = q h t a l c + ~ " [ b l c  
and 
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We now proceed to obtain the desired relation 
k 

(at)'ah = io(k, m, fi)[fil;;. 
m-1 

Since (a t ) *+ lak t '= (a ' )k [n^] ,ax=(a f )ko ' [ [n^ -k ]G,  wecanuse (39) and (42) toobtain 
the recurrence relation 

&,(k+ I, E, $1 = g-'(&,!.G, m - !, 6 ) - p [ k j & ( k ,  ?E, ,$), (43) 
Note that for p = 1 this recurrence relation reduces to (8). 

such that 
Introducing the (&independent) reduced Stirling numbers of the first kind [(k, m )  

(44) - h ( k - 1 1 / 2  ( h - m l 4  Mk, m, 3 = q P 5 ( k , m )  

T h e  exponential dependence on n̂  of the deformed Stirling numbers of the first 
kind, $(k, m, ii), means that we have not been able to express ( a t ) m h  as apolynomial 
in n̂  hut we did express it as a function on i?. 

In order to derive the bi-orthogonality relations between the deformed Stirline 
numbers of the first and second kinds, we first rewrite (34) in the form 

m 

[ i ] ;= 1 ( a t ) h a ' & ( m , k , i - k ) .  (46) 
h=I 

Using (37) we obtain 

& ( m ,  k, fi - k )  = p h ( ' - m ) S  o ( m , k , $ ) .  (47) 
Defining E ( m ,  k )  =ph"-"'Z(m, k ) ,  we obtain relations of the form of equations (16) 
and ( 1 7 )  with F ( m ,  k )  replacing SJm, k )  and 5(k, m )  replacing s,(k,  m).  

6. A generating function for the deformed Stirling numbers of the first kind 

We stan by transforming the q-binomial theorem [I31 into a G-binomial theorem. By 
introducing the symbol 

(48) ( A ;  x)")= (A +x)(  pA + q x ) (  p2A + q 2 x )  . . (p'-'A + q " x )  

we have 

where 

is a G-binomial coefficient and [k], ! = [1],[2],. . . [k],. Equation (49) can he proved 
by induction, using the G-bionomial coefficient recurrence relation 

[ '3 = . ' + I - < [  ;i l],+q' [;I c 
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which follows from the definition of the G-binomial coefficient on using the 
G-arithmetic relation (40). 

Now, from the identity 

J Katriel and M Kibler 

we obtain 

which can be written as an operator identity 

To obtain an expression for (,+)'ak as a function of the number operator A, we have 
to expand the right-hand side of (54) in powers of A. The coefficient of A' can be 
extracted by writing 

The identities 

and 

are found to be useful when implementing ( 5 5 ) .  (To avoid possible confusion we point 
out that the symbol appearing in (57) is the conventional binomial coefficient.) Note 
that for the conventional bosons, for which p = q = 1, equation (55) reduces to an 
expression [15] which can be related to the well-known generating function for the 
conventional Stirling numbers of the first kind [SI. 

7. Discussion 

In the present article we found that the normal ordering formulae for powers of the 
boson number operator can be extended in a simple and natural way to the M-type 
bosons, which satisfy [a, a'], = 1.  However, for the P-type bosons, which satisfy 
[a, a'], = q-', as well as for the more general C-type bosons, we found that the 
extension of the conventional boson analysis results in 'normal-ordering' expressions 
with A-dependent coefficients. 

The marked difference between the M-type bosons and all the others has already 
been noted before, in the context of the extension of the Campbell-Baker-Hausdorff 
formula for products of exponential operators [16]. While the observations pointed 
out above set apart the M-type bosons, the following may be taken to set apart the 
P-type bosons disfavourably, within the general set of G-type bosons: Taking the 
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Hamiltonian of the deformed harmonic oscillator to be X= (hwo/2)(n'a + aa') and 
expanding in powers of s =In q and t =In p (which we assume to be sufficiently small), 
we find that 

1 s + t  
2 

( n * + : ) + - ( n * + + ) * +  . . .  

Apart from an irrelevant shift of the energy zero and a renormalization of the frequency 
into o = wo(l -(s+ t ) / 2 )  this Hamiltonian contains a quadratic anharmonicity unless 
s = -t, i.e. unless p = q-'. It is true that a quadratic anharmonicity will emerge even 
for the P-type oscillator ( p  = q - ' )  as a residue of the fourth-order term, but it will be 
associated with a fourth-order anharmonicity which may well be inconsistent with the 
experimental spectrum of some system of interest, such as a diatomic molecule. 

We finally point out that a coordinate and a conjugate momentum can be defined 
for the deformed oscillator by means of the relations x ^ =  ( a ' + a ) / f i  and p^= 
i(nt - a ) / &  Application of equation (20) with the choice Q = 1 results in (for fioo= 1) 

1 s 2 + s t +  t 2  
[i,p^]=i[a,o']=i ri (r i+l)+.  . .  ( 5 9 )  

from which follows the deformed uncertainty relation 
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